Concept[1]
DataFrames often have missing values (NaN). Use `isnull()` to detect them and `.sum()` to count how many exist per column.
python
df.isnull().sum() # Count nulls per column
df['age'].isnull().sum() # Count nulls in one columnTry it[2]
Check how many null values are in the `age` column.
▸In [ ]:
Quick insert
Concept[3]
Filter out rows with missing values using `notna()` (keeps non-null rows) or `~isnull()` (inverts the null mask). Both give the same result.
python
df_clean = df[df['column'].notna()] # Keep non-null rows
df_clean = df[~df['column'].isnull()] # Same thing, inverted maskTry it[4]
Remove all rows where the `email` column is null.
▸In [ ]:
Quick insert
Concept[5]
Instead of removing rows, you can fill missing values with `fillna()`. Common strategies: fill with 0, a string like "N/A", or a computed value like the column mean.
python
df.fillna(0) # Fill all nulls with 0
df['price'].fillna(df['price'].mean()) # Fill with column meanTry it[6]
Fill missing prices with the mean of the `price` column.
▸In [ ]:
Quick insert